

SOLUTIONS

Module - 5 / JEE-2021

In-Chapter Exercises Chemistry	Oxygen Containing Organic Compounds - I (Alcohol)
--------------------------------	---

EXERCISE - A

1. (B) H_2/Pt reduces both C = C bonds and C = O bonds while $NaBH_4$ does not reduce C = C bond. 2.(C)

3. (B)
$$\beta$$
 $CH_2\ddot{O}H \xrightarrow{H^+} CH_2\ddot{O}H_2 \xrightarrow{-H_2O} CH_3 \xrightarrow{-H^+} CH_3$

If β carbon is 3°, then E1 occurs as a special case.

- **4. (B)** Formation of most stable carbocation is the rate determining step.
- **5. (C)** LiAlH₄ in ether reduces acid to alcohols most effectively.
- **6.(A)** Due to straight chains (1° alcohols), Vander waal forces are higher. Branching (in 3° alcohols) lowers surface area and thus decreases vander waal forces.
- **7.(A)** Except MeOH, which is more acidic than H_2O .
- **8. (C)** Victor-Meyer test: 3° alcohol does not respond.
- **9. (A)** Lucas test: 3° alcohol is most reactive.
- 10.(C)

11. (B)
$$CH_3 - CH - CH_3 \xrightarrow{alc.} CH_3 - CH = CH_2 \xrightarrow{peroxide} CH_3 - CH_2 - CH_2Br \xrightarrow{CH_3ONa} n - Pr - O - CH_3$$

Br

12. (D) Lucas test: 3° alcohol is most reactive.

13. (B)
$$CH_3 - C - CH_2CH_2CH_3$$
 (Methyl Ketones give lodoformTest)

14.(AB)

15. (A) Reactivity towards $S_N 1: 3^{\circ} > 2^{\circ} > 1^{\circ}$ (HBr usually follows $S_N 1$ path)

17. (C) All are 2° alcohols except IV (Benzyl alcohol). Look for the stability of carbocations using hyperconjugation.

18. (C)
$$CH_2 = C - CH_2$$
 H^+/H_2O
 $CH_3 - C - CH_3$
 H_3
 $CH_3 - C - CH_3$
 H_4
 $CH_3 - C - CH_3$
 $CH_3 - C - CH_3$

20. (B)
$$HO$$
 Br $-CH - CH_2 - CH_3$ (Visualise more stable benzyl carbocation).

EXERCISE - B

- **1.(C)** Methyl salicylate is produced by many species of plants particularly wintergreens. So it is a component of oil of wintergreen.
- **2.(D)** This is the Reimer Teimann Reaction. The electrophile is *CCl₂ (dichlorocarbene) generated from CHCl₃ by the action of a base

3.(D) Phenol undergoes electrophilic subtitution reactions much more readily compared to benzene due to electron releasing ability of –OH group. Also, –OH group is strongly 'o' and 'p' directing due to +M effect.

OH +
$$3Br_2$$
 (aq)

Br
Br
Br

A 6 A Shipperson base

2, 4, 6 - tribromophenol

4.(B)
$$OH + Br_2 \xrightarrow{CS_2} O^{OH} + OH$$
Br
$$Br$$

5.(AD) OH
$$\stackrel{\Theta}{+}$$
 H - CCl₃ $\stackrel{-\text{H}_2\text{O}}{\longrightarrow}$ $\stackrel{\Theta}{\leftarrow}$ CCl₃ $\stackrel{\Delta}{\longrightarrow}$: CCl₂ + Cl

$$+: CCl_2 \longrightarrow CCl_2 \longrightarrow CHO \longrightarrow CHO$$

$$OH \longrightarrow CHO \longrightarrow CHO$$

$$OH \longrightarrow CHO \longrightarrow CHO$$

$$OH \longrightarrow CHO \longrightarrow CHO$$

6.(C) Phenol is also known as carbolic acid 7. (A) Phenol is a weaker acid than H₂O.

8.(B) OH + NaOH
$$\xrightarrow{\Delta}$$
 ONa + Et_2SO_4 \longrightarrow O - Et

9.(AC) Phenol reacts with FeCl₃, whereas Benzyl alcohol does not.

Phenol does't react with Luca's reagent, whereas benzyl alcohol does.

10. (AC)
$$C_6H_5OH \xrightarrow{CH_3COCl} C_6H_5 - O - C - CH_3$$
 (Acetylation; Schotten Baumann)

[JEE-2021/Module - 5]

For Question 11 - 13

11.(B) 12.(C) 13.(B) OH CHO
$$(Y)$$
 CHO (Y) (S) $(S$

1.(B)
$$OH$$

$$OH$$

$$S_{N^2}$$

$$OH$$

$$+ CH_3I$$

- **2.(D)** Epoxides react with Grignard reagents and form 1°, 2° and 3° alcohol depending on the structure of epoxide.
- **3.(D)** By williamson's method: Halide should be 1° , as it is $S_N 2$. **Note:** (A) will also form ether but it is not Williamson's method.

4.(C)
$$CH_3 - O - CH = CH_2 \xrightarrow{HBr} CH_3 - O - CH = CH_2 \xrightarrow{Br} CH_3 - Br + CH = CH_2 \Longleftrightarrow CH_3 - CHO$$

- **5.(D)** Ether: sp^3 with 2 lone pairs **6.(A)**
- 7.(C) $C_2H_5 O C_2H_5 \text{ hot} \xrightarrow{\text{conc.}} 2C_2H_5I$

Usually, C₂H₅OH and C₂H₅I is formed. If excess of HI is used, then 2 moles of C₂H₅I is formed.

EXERCISE - D

1.(A)
$$CH_2OH$$
 CH_2OH CH_2OH

IN-CHAPTER EXERCISES

7.(C) Ethylene glycol is used to lower the freezing point of water in the radiator.

[JEE-2021/Module - 5] Chemistry